Efficient Maternal to Neonatal transfer of SARS-CoV-2 and BNT162b2 antibodies

2021 
BackgroundThe significant risks posed to mothers and fetuses by COVID-19 in pregnancy have sparked a worldwide debate surrounding the pros and cons of antenatal SARS-CoV-2 inoculation, as we lack sufficient evidence regarding vaccine effectiveness in pregnant women and their offspring. We aimed to provide substantial evidence for the effect of BNT162b2 mRNA vaccine versus native infection on maternal humoral, as well as transplacentally acquired fetal immune response, potentially providing newborn protection. MethodsA multicenter study where parturients presenting for delivery were recruited at 8 medical centers across Israel and assigned to three study groups: vaccinated (n=86); PCR confirmed SARS-CoV-2 infected during pregnancy (n=65), and unvaccinated non-infected controls (n=62). Maternal and fetal blood samples were collected from parturients prior to delivery and from the umbilical cord following delivery, respectively. Sera IgG and IgM titers were measured using Milliplex MAP SARS-CoV-2 Antigen Panel (for S1, S2, RBD and N). ResultsBNT162b2 mRNA vaccine elicits strong maternal humoral IgG response (Anti-S and RBD) that crosses the placenta barrier and approaches maternal titers in the fetus within 15 days following the first dose. Maternal to neonatal anti-COVID-19 antibodies ratio did not differ when comparing sensitization (vaccine vs. infection). IgG transfer rate was significantly lower for third-trimester as compared to second trimester infection. Lastly, fetal IgM response was detected in 5 neonates, all in the infected group. ConclusionsAntenatal BNT162b2 mRNA vaccination induces a robust maternal humoral response that effectively transfers to the fetus, supporting the role of vaccination during pregnancy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []