[Effects of water and nitrogen stress on water utilization of dominant species in broadleaved Korean pine forest in Changbai Mountain, China].

2021 
The aggravation of global nitrogen deposition may change plant water utilization and affect plant growth. Understanding the changes of vegetation water consumption under nitrogen deposition is of great significance for simulating and predicting the evolution of each component of forest hydrological cycle. We used the hydrogen and oxygen isotope tracer method to analyze water consumption source, quantity and law of Quercus mongolica (Qm), Fraxinus manshurica (Fm) and Tilia amurensis (Ta), the dominant species in broadleaved Korean pine forest of Changbai Mountain, under different add amounts of nitrogen [low nitrogen addition group (11.8 kg·hm-2·a-1), LN; high nitrogen addition group (23.6 kg·hm-2· a-1), HN] and different amounts of simulated precipitation (water addition amount were 0, 400, 800 and 1600 mL, equivalent to single rainfall amount were 0, 16, 32 and 64 mm, respectively). The results showed that under the condition of relative drought, soil water utilization ratio of Qm, Fm and Ta in the LN group were 26%, 12% and 20%, higher than that in HN group. When the amount of simulated precipitation was 16 mm, soil water utilization ratio of Qm, Fm and Ta in LN group reached the highest, being 73%, 70% and 43%, respectively. This ratio also reached a high value in HN group, but being less than the values in LN group. When the amount of simulated precipitation was 32 mm, soil water content approximated the average value in broadleaved Korean pine forest in the growing season in Changbai Mountain. The average soil water utilization ratio of test tree species in HN group was 39%, higher than that in LN group (16%). When the amount of simulated precipitation reached 64 mm, the soil water was saturation. Soil water utilization ratio of Qm, Fm and Ta in LN group was 14%, 5% and 1%, which was lower than that in HN group, the corresponding ratio were 64%, 13% and 10%, respectively. In conclusion, under the condition of less precipitation and relatively dry soil, the soil water utilization ratio of those three tree species were lower, and the increases of nitrogen availability further reduced the ratio. When the amount of precipitation was high and soil moisture was higher than the average value of the growing season, soil water utilization ratio of those tree species was higher. With the increases of soil nitrogen availability, this ratio was further increased.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []