DNA pyrimidine bases in water: Insights into relative reactivity, byproducts formation and combined toxicity during chlorination

2020 
Abstract Soluble microbial products (SMPs), as precursors of disinfection byproducts (DBPs) in water treatment, are composed of polysaccharides, humic acid, proteins and DNA, and have caused widespread concerned. Pyrimidine bases (cytosine and thymine) are significant nitrogenous constituents of DNA, which could pose an adverse impact on water quality during chlorination. This study focused on the correlation between relative reactivity, formation of DBPs and combined toxicity in the chlorination of a binary pyrimidine base mixture. The relative reactivities of cytosine and thymine were quite different at a low disinfectant concentration; cytosine reacted more actively with chlorine than thymine did, at the chlorine/total pyrimidine bases molar ratio = 10. The chlorination of binary pyrimidine bases can produce both carbonous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs). In particular, the total yields of trichloromethane (TCM) and trichloronitromethane (TCNM) were lower than the additive yields of monadic cytosine and monadic thymine (“monadic” refers to “separate”), whereas the total yields of haloacetic acids (HAAs) and haloacetonitriles (HANs) were promoted evidently. High reactivity of cytosine with chlorine, greater potential of cytosine to produce specific DBPs and the alkylation of transformation products of thymine may synthetically account for the diversity in total DBPs yields, especially the increased formation of HAAs and HANs. In our toxicity trial, even though the antagonistic effect predominated at fa > 0.4 (fa refers to the affected fraction), the synergism at low concentration levels could enhance the combined toxicity by promoting the yields of N-DBPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    2
    Citations
    NaN
    KQI
    []