Acute hypoxia reduces exogenous glucose oxidation, glucose turnover, and metabolic clearance rate during steady-state aerobic exercise

2020 
Abstract Background Exogenous carbohydrate oxidation is lower during steady-state aerobic exercise in native lowlanders sojourning at high altitude (HA) compared to sea level (SL). However, the underlying mechanism contributing to reduction in exogenous carbohydrate oxidation during steady-state aerobic exercise performed at HA has not been explored. Objective To determine if alterations in glucose rate of appearance (Ra), disappearance (Rd) and metabolic clearance rate (MCR) at HA provide a mechanism for explaining the observation of lower exogenous carbohydrate oxidation compared to during metabolically-matched, steady-state exercise at SL. Methods Using a randomized, crossover design, native lowlanders (n = 8 males, mean ± SD, age: 23 ± 2 yr, body mass: 87 ± 10 kg, and VO2peak: SL 4.3 ± 0.2 L/min and HA 2.9 ± 0.2 L/min) consumed 145 g (1.8 g/min) of glucose while performing 80-min of metabolically-matched (SL: 1.66 ± 0.14 VO2 L/min 329 ± 28 kcal, HA: 1.59 ± 0.10 VO2 L/min, 320 ± 19 kcal) treadmill exercise in SL (757 mmHg) and HA (460 mmHg) conditions after a 5-h exposure. Substrate oxidation rates (g/min) and glucose turnover (mg/kg/min) during exercise were determined using indirect calorimetry and dual tracer technique (13C-glucose oral ingestion and [6,6-2H2]-glucose primed, continuous infusion). Results Total carbohydrate oxidation was higher (P  Conclusion Novel results from this investigation suggest that reductions in exogenous carbohydrate oxidation at HA may be multifactorial; however, the apparent insensitivity of peripheral tissue to glucose uptake may be a primary determinate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    5
    Citations
    NaN
    KQI
    []