Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing

2020 
Abstract PM2.5 filter sampling and components measurement were conducted in autumn and winter from 2014 to 2015 at a suburban site (referred herein as “LLH site”) located in the southwest of Beijing. The offline aerosol mass spectrometry (offline-AMS) analysis and positive matrix factorization (PMF) were applied for measurement and source apportionment of water-soluble organic aerosol (WSOA). Organic aerosol (OA) always dominated PM2.5 during the sampling period, especially in winter. WSOA pollution was serious during the polluted period both in autumn (31.1 µg/m3) and winter (31.9 µg/m3), while WSOA accounted for 54.4% of OA during the polluted period in autumn, much more than that (21.3%) in winter. The oxidation degree of WSOA at LLH site was at a high level (Oxygen-to-Carbon ratio, O/C=0.91) and secondary organic aerosol (SOA) contributed more mass ratio of WSOA than primary organic aerosol (POA) during the whole observation period. In winter, coal combustion OA (CCOA) was a stable source of OA and on average accounted for 25.1% of WSOA. In autumn, biomass burning OA (BBOA) from household combustion contributed 38.3% of WSOA during polluted period. In addition to oxygenated OA (OOA), aqueous-oxygenated OA (aq-OOA) was identified as an important factor of SOA. During heavy pollution periods, the mass proportion of aq-OOA to WSOA increased significantly, implying the significant SOA formation through aqueous-phase process. The result of this study highlights the concentration on controlling the residential coal and biomass burning, as well as the research needs on aqueous chemistry in OA formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    5
    Citations
    NaN
    KQI
    []