Cyclobilirubin formation by in vitro photoirradiation with neonatal phototherapy light

2001 
Background: The main mechanism of phototherapy for neonatal hyperbilirubinemia is the production and excretion of (EZ)- and (EE)-cyclobilirubin (4E,15Z- and 4E,15E-cyclobilirubin). Thus, the clinical efficacy of the light source for phototherapy must be evaluated by cyclobilirubin formation from (ZZ)-bilirubin in in vitro photoirradiation. Methods: In the present study, we investigated the in vitro production pattern of bilirubin photoisomers by phototherapy light from the bilirubin–human serum albumin complex. Results: No clear difference was found in the curves relative to (ZZ)-bilirubin and its photoisomers under aerobic and anaerobic conditions. The ratio of (EZ)-cyclobilirubin to (ZZ)-bilirubin increased proportionately to the dose of irradiating light and no photoequilibrium state was observed analogous to that found in configurational photoisomerization. The concentration of (EZ)- and (EE)-cyclobilirubin increased proportionately with the grade of the percentage decrease in A460 nm from 0 to 23%. With a percentage decrease in A460 nm of 23% or more, the cyclobilirubin concentrations reached a steady state. The reason for this appears to be that the concentration of (ZZ)-bilirubin, a substrate for photoisomers, dropped below 1 mg/100 mL. Biliverdin was produced only in trace amounts. However, the absorption at 520–700 nm increased after a percentage decrease in A460 nm of more than 23%. Conclusions: The results of the present study show that little bilirubin photooxidation occurred with in vitro aerobic photoirradiation. Before the concentration of cyclobilirubin reaches a steady state, it is theoretically valid to use the percentage decrease in A460 nm for the evaluation of the clinical efficacy of the light source.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []