Supernova Triggers for End-Devonian Extinctions?.

2020 
The Late Devonian was a protracted period of low speciation resulting in biodiversity decline, culminating in extinction events near the Devonian-Carboniferous boundary. Recent evidence indicates that the final extinction event may have coincided with a dramatic drop in stratospheric ozone, possibly due to a global temperature rise. Here we study an alternative possible cause for the postulated ozone drop: a nearby supernova explosion that could inflict damage by accelerating cosmic rays that can deliver ionizing radiation for up to $\sim 100$ kyr. We therefore propose that end-Devonian extinction was triggered by one or more supernova explosions at $\sim 20 \ \rm pc$, somewhat beyond the ``kill distance'' that would have precipitated a full mass extinction. Nearby supernovae are likely due to core-collapses of massive stars in clusters in the thin Galactic disk in which the Sun resides. Detecting any of the long-lived radioisotopes \sm146, \u235 or \pu244 in one or more end-Devonian extinction strata would confirm a supernova origin, point to the core-collapse explosion of a massive star, and probe supernova nucleosythesis. Other possible tests of the supernova hypothesis are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    8
    Citations
    NaN
    KQI
    []