Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system

2017 
Two alternative chemical synthesis methods—cryotechnological coprecipitation of hydroxides and cocrystallization of salts—were used for preparing (CeO2)1–x (Y2O3) x nanopowders (x = 0.10, 0.15, 0.20) with a mean coherent scattering domain size of ~7–11 nm and S sp = 2.1–97.5 m2/g. From these nanopowders, ceramic nanomaterials with mean coherent scattering domain sizes of ~61–85 nm were synthesized. It was studied how the phase composition, microstructure, and electrical transport properties of the produced samples depend on the Y2O3 content of a CeO2-based solid solution and on the synthesis method. It was shown that, in the series (CeO2)1–x (Y2O3) x (x = 0.10, 0.15, 0.20), the solid solution (CeO2)0.90(Y2O3)0.10 has the highest ionic conductivity with the ion transport number t i = 0.73 (600°C). In its physicochemical characteristics, this ceramic can be used as a solid electrolyte of intermediate-temperature fuel cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []