Role of oxygen on the phase stability and microstructure evolution of CaCu3Ti4O12 ceramics

2017 
Abstract Phase stability and microstructure evolution of polycrystalline CaCu 3 Ti 4 O 12 (CCTO) ceramics were studied by controlling the partial pressure of oxygen (from a poor to an oxygen rich atmosphere) during the sintering process at high temperatures. The samples were analyzed by X-ray powder diffraction, scanning electron microscopy and X-ray energy dispersive spectroscopy. Our results show that the oxygen partial pressure during the sintering process is an important parameter that controls the phase stability, non-stoichiometry, and decomposition process of the CCTO phase as well as the densification and grain growth mechanisms on these polycrystalline ceramics. These results provided us further insight into the important role of copper reduction and copper/oxygen diffusion on the crystalline structure and morphological characteristics of polycrystalline CCTO ceramics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    28
    Citations
    NaN
    KQI
    []