Nanoscale Characterization of Ion Mobility by Temperature-Controlled Li-Nanoparticle Growth

2019 
Detailed understanding of electrochemical transport processes on the nanoscale is considered not only as a topic of fundamental scientific interest but also as a key to optimize material systems for application in electrochemical energy storage. A prominent example is solid-state electrolytes, where transport properties are strongly influenced by the microscopic structure of grain boundaries or interface regimes. However, direct characterization of ionic transport processes on the nanoscale remains a challenge. For a heterogeneous Li+-conducting glass ceramic, we demonstrate quantitative nanoscopic probing of electrochemical properties on the basis of temperature-controlled growth of nanoscopic Li particles with conductive tip atomic force microscopy. The characteristic energy barriers can be derived from the particle growth dynamics and are consistent with simultaneously recorded nanovoltammetry, which can be interpreted as an interplay between overpotentials, ion conductivity, and nanoscale spreading re...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []