An IoT-based Framework for Early Identification and Monitoring of COVID-19 Cases

2020 
The world has been facing the challenge of COVID-19 since the end of 2019 It is expected that the world will need to battle the COVID-19 pandemic with precautious measures, until an effective vaccine is developed This paper proposes a real-time COVID-19 detection and monitoring system The proposed system would employ an Internet of Things (IoTs) framework to collect real-time symptom data from users to early identify suspected coronaviruses cases, to monitor the treatment response of those who have already recovered from the virus, and to understand the nature of the virus by collecting and analyzing relevant data The framework consists of five main components: Symptom Data Collection and Uploading (using wearable sensors), Quarantine/Isolation Center, Data Analysis Center (that uses machine learning algorithms), Health Physicians, and Cloud Infrastructure To quickly identify potential coronaviruses cases from this real-time symptom data, this work proposes eight machine learning algorithms, namely Support Vector Machine (SVM), Neural Network, Naive Bayes, K-Nearest Neighbor (K-NN), Decision Table, Decision Stump, OneR, and ZeroR An experiment was conducted to test these eight algorithms on a real COVID-19 symptom dataset, after selecting the relevant symptoms The results show that five of these eight algorithms achieved an accuracy of more than 90% Based on these results we believe that real-time symptom data would allow these five algorithms to provide effective and accurate identification of potential cases of COVID-19, and the framework would then document the treatment response for each patient who has contracted the virus
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    61
    Citations
    NaN
    KQI
    []