Decreased IL-10 accelerates B-cell leukemia/lymphoma in a mouse model of pediatric lymphoid leukemia.

2021 
Abstract Exposures to a wide repertoire of common childhood infections and strong inflammatory responses to those infections are associated with risk of pediatric B-cell acute lymphoblastic leukemia (B-ALL) in opposing directions. Neonatal inflammatory markers are also related to risk by unknown mechanism(s). Here, we demonstrate that IL-10 deficiency, which is associated with childhood B-ALL, indirectly impairs B lymphopoiesis and increases B-cell DNA damage in association with a module of6 proinflammatory/myeloid-associated cytokines (IL-1α, IL-6, IL-12p40, IL-13, MIP-1β/CCL4, and G-CSF). Importantly, antibiotics attenuated inflammation and B-cell defects in preleukemic Cdkn2a–/–Il10–/–mice. In anETV6-RUNX1+(E6R1+) Cdkn2a–/–mouse model of B-ALL, decreased levels of IL-10 accelerated B cell neoplasms in a dose dependent manner, and altered the mutational profile of these neoplasms. Our results illuminate a mechanism through which a low level of IL-10 can create risk of leukemic transformation and support developing evidence that microbial dysbiosis contributes to pediatric B-ALL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []