Stress-induced phospho-ubiquitin formation causes parkin degradation

2018 
Mutations in the E3 ubiquitin ligase parkin are the most common known cause of autosomal recessive parkinsonism. Multiple types of stress decrease parkin protein levels, an effect that may be relevant to sporadic Parkinson9s disease (PD), but the mechanism(s) involved in this loss remain largely unclear. We sought to elucidate these mechanisms using a PD-relevant stressor, L-DOPA, the precursor to dopamine, which forms reactive oxygen species (ROS) as well as toxic quinones via auto-oxidation. We find that L-DOPA causes parkin loss through both an oxidative stress-independent and an oxidative stress-dependent pathway. Characterization of the latter reveals that it requires both the kinase PINK1 and parkin9s interaction with phosphorylated ubiquitin (phospho-Ub) and is mediated by proteasomal degradation. Surprisingly, mitochondrial parkin activity and autoubiquitination as well as mitophagy are not required for such loss. During stress induced by the oxidative stressor hydrogen peroxide or the metabolic uncoupler CCCP, parkin degradation also requires its association with phospho-Ub, indicating that this mechanism is broadly generalizable. As oxidative stress, metabolic dysfunction and phospho-Ub levels are all elevated in PD patients, we suggest that these changes may lead to the loss of parkin expression in PD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []