Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing

2018 
AIM: The mechanisms underlying detection and transmission of sensory signals arising from visceral organs, such as the urethra, are poorly understood. Recently, specialized ACh-expressing cells embedded in the urethral epithelium have been proposed as chemosensory sentinels for detection of bacterial infection. Here, we examined the morphology and potential role in sensory signalling of a different class of specialized cells that express serotonin (5-HT), termed paraneurones. METHODS: Urethrae, dorsal root ganglia neurones and spinal cords were isolated from adult female mice and used for immunohistochemistry and calcium imaging. Visceromotor reflexes (VMRs) were recorded in vivo. RESULTS: We identified two morphologically distinct groups of 5-HT+ cells with distinct regional locations: bipolar-like cells predominant in the mid-urethra and multipolar-like cells predominant in the proximal and distal urethra. Sensory nerve fibres positive for calcitonin gene-related peptide, substance P, and TRPV1 were found in close proximity to 5-HT+ paraneurones. In vitro 5-HT (1 μm) stimulation of urethral primary afferent neurones, mimicking 5-HT release from paraneurones, elicited changes in the intracellular calcium concentration ([Ca2+ ]i ) mediated by 5-HT2 and 5-HT3 receptors. Approximately 50% of 5-HT responding cells also responded to capsaicin with changes in the [Ca2+ ]i . In vivo intra-urethral 5-HT application increased VMRs induced by urethral distention and activated pERK in lumbosacral spinal cord neurones. CONCLUSION: These morphological and functional findings provide insights into a putative paraneurone-neural network within the urethra that utilizes 5-HT signalling, presumably from paraneurones, to modulate primary sensory pathways carrying nociceptive and non-nociceptive (mechano-sensitive) information to the central nervous system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    18
    Citations
    NaN
    KQI
    []