Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps

2014 
Three dimensional interstellar extinction maps provide a powerful tool for stellar population analysis. We use data from the VISTA Variables in the Via Lactea survey together with the Besan\c{c}on stellar population synthesis model of the Galaxy to determine interstellar extinction as a function of distance in the Galactic bulge covering $ -10 < l < 10$ and $-10 < b <5$. We adopted a recently developed method to calculate the colour excess. First we constructed the H-Ks vs. Ks and J-Ks vs. Ks colour-magnitude diagrams based on the VVV catalogues that matched 2MASS. Then, based on the temperature-colour relation for M giants and the distance-colour relations, we derived the extinction as a function of distance. The observed colours were shifted to match the intrinsic colours in the Besan\c{c}on model as a function of distance iteratively. This created an extinction map with three dimensions: two spatial and one distance dimension along each line of sight towards the bulge. We present a 3D extinction map that covers the whole VVV area with a resolution of 6' x 6', using distance bins of 0.5 kpc. The high resolution and depth of the photometry allows us to derive extinction maps for a range of distances up to 10 kpc and up to 30 magnitudes of extinction in $A_{V}$. Integrated maps show the same dust features and consistent values as other 2D maps. We discuss the spatial distribution of dust features in the line of sight, which suggests that there is much material in front of the Galactic bar, specifically between 5-7 kpc. We compare our dust extinction map with high-resolution $\rm ^{12}CO$ maps towards the Galactic bulge, where we find a good correlation between $\rm ^{12}CO$ and $\rm A_{V}$. We determine the X factor by combining the CO map and our dust extinction map. Our derived average value is consistent with the canonical value of the Milky Way.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    115
    Citations
    NaN
    KQI
    []