Massive Neutrinos Leave Fingerprints on Cosmic Voids

2018 
Massive neutrinos uniquely affect cosmic voids. We explore their impact on void clustering using both the DEMNUni and MassiveNuS simulations. For voids, neutrino effects depend on the observed void tracers. As the neutrino mass increases, the number of small voids traced by cold dark matter particles increases and the number of large voids decreases. Surprisingly, when massive, highly biased, halos are used as tracers, we find the opposite effect. How neutrinos impact the scale at which voids cluster and the void correlation is similarly sensitive to the tracers. This scale dependent trend is not due to simulation volume or halo density. The interplay of these signatures in the void abundance and clustering leaves a distinct fingerprint that could be detected with observations and potentially help break degeneracies between different cosmological parameters. This paper paves the way to exploit cosmic voids in future surveys to constrain the mass of neutrinos.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    137
    References
    62
    Citations
    NaN
    KQI
    []