Mitochondrial active and relaxed state respiration after heat shock mRNA response in the heart

2019 
Abstract Induction of Heat Shock Proteins results in cytoprotection. Beneficial effect results from transcription and translational cellular components’ involvement that defends metabolism and thus induce ischemic protection of the tissue. Mitochondrial respiration is also involved in stress- induced conditions. It is not a uniform process. Cytochrome c Oxidase (CytOx) representing complex IV of the Electron Transfer Chain (ETC) has a regulatory role for mitochondrial respiratory activity, which is tested in our study after hsp induction. Moreover, protein translation for mitochondrial components was probed by the detection of MT-CO1 for Subunit 1 of CytOx neosynthesis. Wistar rats were subjected to whole-body hyperthermia at 42.0–42.5 °C for 15 min followed by a normothermic recovery period. Heat shock response was monitored time dependent from LV biopsies of all control and heat treated animals with PCR-analysis for hsp 32, 60, 70.1, 70.2, 90 and MT-CO1 expression at 15, 30, 45, 60, 120 and 360 min recovery (n = 5 in each group), respectively. Enzymatic activity of CytOx were evaluated polarographically. High energy phosphates were detected by chromatographic analysis. The mRNA expression of MT-CO1 peaked at 60 min and was accompanied by hsp 32 (r = 0.457; p = 0.037) and hsp 70.2 (r = 0.615; p = 0.003) upregulation. With hsp induction, mitochondrial respiration was increased initially. Enzymatic activity reconciled from active into relaxed status wherein CytOx activity was completely inhibited by ATP. Myocardial ATP content increased from stress induced point i.e. −1 protein w/w to finally 1.5 ± 0.53 µmol g −1 protein w/w at 120 min recovery interval. Hyperthermic, myocardial hsp- induction goes along with increased CytOx activity representing an increased “active” mitochondrial respiration. In parallel, de -novo holoenzyme assembly of CytOx begins as shown by MT-CO1 upregulation at 60 min recovery time crossing with a final return to the physiological “relaxed” state and ATP -inhibited respiration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []