Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy

2021 
Degenerative cervical myelopathy (DCM) is a progressive condition characterized by degeneration of osseocartilaginous structures within the cervical spine resulting in compression of the spinal cord and presentation of clinical symptoms. Compared to healthy controls (HCs), studies have shown DCM patients experience structural and functional reorganization in the brain; however, sex-dependent cortical differences in DCM patients remains largely unexplored. In the present study, we investigate the role of sex differences on the structure of the cerebral cortex in DCM and determine how structural differences may relate to clinical measures of neurological function. T1-weighted structural MRI scans were acquired in 85 symptomatic and asymptomatic patients with DCM and 90 age-matched HCs. Modified Japanese Orthopedic Association (mJOA) scores were obtained for patients. A general linear model was used to determine vertex-level significant differences in gray matter volume (GMV) between the following groups (1) male HCs and female HCs, (2) male patients and female patients, (3) male patients and male HCs, and (4) female patients and female HCs. Within patients, males exhibited larger GMV in motor, language, and vision related brain regions compared to female DCM patients. Males demonstrated a significant positive correlation between GMV and mJOA score, in which patients with worsening neurological symptoms exhibited decreasing GMV primarily across somatosensory and motor related cortical regions. Females exhibited a similar association, albeit across a broader range of cortical areas including those involved in pain processing. In sensorimotor regions, female patients consistently showed smaller GMV compared with male patients, independent of mJOA score. Results from the current study suggest strong sex-related differences in cortical volume in patients with DCM, which may reflect hormonal influence or differing compensation mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []