Sucrose and starch metabolism in carrot (Daucus carota L.) cell suspensions analysed by 13C-labelling: indications for a cytosol and a plastid-localized oxidative pentose phosphate pathway

1998 
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1- 13 C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13 C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of the pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1- 13 C]-hexoses to [6- 13 C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and triose phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and the plastid.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    36
    Citations
    NaN
    KQI
    []