Dynamic response of a multilayer prismatic structure to impulsive loads incident from water

2009 
The dynamic crush response of a low relative density, multilayered corrugated core is investigated by combining insights from experiments and 3D finite element simulations. The test structures have been fabricated from 304 stainless steel corrugations with 0°/90° lay-up orientation and bonded by means of a transient liquid phase method. Characterization of the dynamic crushing of these structures has revealed that at low rates, interlayer interactions induce a buckling-dominated soft response. This softness is diminished at high rates by inertial stabilization and the response of the structure transitions to yield-dominated behavior. Unidirectional dynamic crushing experiments conducted using a dynamic test facility reveal a soft response, consistent with lower rate crushing mechanisms. The 3D simulation predictions of crushing strain, pulse amplitude/duration and impulse delivery rate correspond closely with the measurements. The application of core homogenization schemes has revealed that by calibrating with a multilayer unit cell, high fidelity continuum level predictions are possible. Moreover, even simplified hardening curves based on equivalent energy absorption provide remarkably accurate predictions of the crush strains and the impulse transmitted through the core. The multilayered structures investigated here significantly reduced the transmitted pressures of an impulsive load.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    55
    Citations
    NaN
    KQI
    []