Axion Dark Matter Research with IBS/CAPP

2019 
The axion, a consequence of the PQ mechanism, has been considered as the most elegant solution to the strong-CP problem and a compelling candidate for cold dark matter. The Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) was established on 16 October 2013 with a main objective to launch state of the art axion experiments in South Korea. Relying on the haloscope technique, our strategy is to run several experiments in parallel to explore a wide range of axion masses with sensitivities better than the QCD axion models. We utilize not only the advanced technologies, such as high-field large-volume superconducting (SC) magnets, ultra low temperature dilution refrigerators, and nearly quantum-limited noise amplifiers, but also some unique features solely developed at the Center, including high-quality SC resonant cavities surviving high magnetic fields and efficient cavity geometries to reach high-frequency regions. Our goal is to probe axion dark matter in the frequency range of 1-10 GHz in the first phase and then ultimately up to 25 GHz, even in a scenario where axions constitute only 10% of the local dark matter halo. In this report, the current status and future prospects of the experiments and R&D activities at IBS/CAPP are described.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    16
    Citations
    NaN
    KQI
    []