Engineering Alginate Microparticles for Optimized Accumulation in Fetal Rat Myelomeningocele

2021 
Abstract Introduction Intraamniotic microparticle injection is a novel technique for the treatment of MMC in which microparticles are delivered in-utero in a minimally invasive fashion to bind to and protect the exposed spinal cord. This technique could offer greater access to and earlier intervention in the prenatal treatment of MMC. Here we demonstrate progress on the engineering of the microparticles to promote binding to the MMC defect. We hypothesized that when the particle's surface charge was decreased and delivery concentration increased, particles would bind more frequently and more specifically to the MMC defect. Methods Alginate microparticles underwent surface modification to alter the particle charge. Dye-loaded alginate, alginate- dextran sulfate, and alginate- chitosan were injected on e17 into the amnion of a rat model of MMC and the frequency and specificity of particle binding to MMC defect was calculated. Specificity of binding was described using a defect-to-skin brightness ratio based on specimen imaging. Comparisons were made with chi-square, p Results There was no difference in binding frequency at e17 with 0.6 mg/fetal kg between the three tested alginate particles. However, alginate- dextran sulfate bound most specifically to the defect (p Conclusion We demonstrate that the intraamniotic injection of alginate-dextran sulfate microparticles at high concentration bind more frequently and more specifically to MMC defects than the previously tested unmodified alginate microparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []