Recovery characteristics of high damping elastomers used in seismic isolation bearings.

1998 
The protection of nuclear and civil structures from the destructive effects of earthquakes has been the focus of intense research and development throughout the world. Seismic isolation is an effective means for reducing and even eliminating the devastating consequences of earthquakes on people, equipment and structures. Engineers have developed many devices for implementing the seismic isolation strategy and the most effective and economical ones have been identified through the test of time. One of these devices is the laminated elastomeric isolation bearing. The behavior of high damping elastomer bearings during several recent earthquakes has shown that they are a viable device for mitigating the effects of earthquakes. In this paper, results are presented from recent tests on two different elastomers. The first is a highly filled, high modulus, high damping elastomer and the second is a highly-filled, low modulus, high damping elastomer. The stiffness recovery characteristics of the high modulus elastomer subjected to beyond design basis strains and the results of seven years of aging on the low modulus elastomer are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []