Photothermally enhanced photodynamic therapy based on mesoporous Pd@Ag@mSiO2 nanocarriers

2013 
In this work, we have demonstrated that mesoporous silica-coated Pd@Ag nanoparticles (Pd@Ag@mSiO2) can be used as an excellent nanoplatform for photodynamic therapy (PDT) drug delivery. Photosensitizer molecules, Chlorin e6 (Ce6), are covalently linked to the mesoporous shell and the prepared Pd@Ag@mSiO2–Ce6 nanoparticles exhibit excellent water solubility, good stability against leaching and high efficiency in photo-generating cytotoxic singlet oxygen. More importantly, the photothermal effect of Pd@Ag nanoplates under the irradiation of a NIR laser can enhance the uptake of Pd@Ag@mSiO2–Ce6 nanoparticles by cells, further increasing the PDT efficiency toward cancer cells. The photothermally enhanced PDT effects were demonstrated both in vitro and in vivo. When the Pd@Ag@mSiO2–Ce6 nanoparticles were injected intratumorally into the S180 tumor-bearing mice, the tumors were completely destroyed without recurrence of tumors upon irradiation with both 808 nm and 660 nm lasers, while the irradiation with 808 nm or 660 nm alone did not. These results indicate that the Pd@Ag@mSiO2 nanoparticles may be a valuable new tool for application in cancer phototherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    50
    Citations
    NaN
    KQI
    []