Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility

2018 
Objectives: Increasing numbers of miltefosine treatment failures in visceral leishmaniasis therapy and reports of miltefosine resistance in the Indian subcontinent resulted in the recommendation to use liposomal amphotericin B as first-line therapy. Cross-resistance between miltefosine and amphotericin B has recently been documented, suggesting a role of mutations in the miltefosine transporter, a complex encoded by the MT and ROS3 genes. This study aimed to further explore the putative role of MT/ROS3 defects in the molecular basis of amphotericin B cross-resistance. Methods: The susceptibility profiles of different miltefosine-resistant Leishmania infantum strains with well-characterized mutations in the transporter complex and the corresponding episomally restored susceptible parasite lines were determined using both the routine extracellular promastigote assay and the intracellular amastigote assay. Results: In vitro amastigote and promastigote susceptibility testing of the two miltefosine-resistant and the episomally reconstituted L. infantum lines revealed full susceptibility to amphotericin B, despite the variable miltefosine susceptibility profile. Conclusions: Mutations present in either the MT and/or ROS3 gene are not sufficient to elicit higher tolerance to amphotericin B. Additional synergistic adaptations may be responsible for the miltefosine/amphotericin B cross-resistance described earlier.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    8
    Citations
    NaN
    KQI
    []