Millennial-scale climate variability during the mid-Pleistocene transition period in the northern South China Sea

2013 
Abstract Stable isotopes of foraminiferal multispecies (surface dwelling Globigerinoides ruber , thermocline dwelling Pulleniatina obliquiloculata , and benthic Uvigerina peregrina ) and Mg/Ca ratios of G. ruber shells were analyzed with an average time resolution of ∼370 yr for reconstructing the orbital- and millennial-scale changes in the East Asian monsoon and associated upper water structure during the mid-Pleistocene period of 800–1060 ka at ODP Site 1144 in the northern South China Sea (SCS). It has been found that generally the sea surface temperature (SST) were lower and the depth of thermocline (DOT) was deeper during glacial stages and vice versa during interglacial stages, indicating a strengthened winter monsoon and weakened summer monsoon during glacial stages. The sea surface salinity (SSS) was relatively lower during glacials, induced by the greatly reduced distance of this site to the shore during times of low sea level. Further, spectral analyses have revealed significant semi-precessional and/or precessional cycles in the planktic δ 18 O, SST and the proxies of SSS and DOT, showing the typical characteristics of tropical climate change. This means that during the mid-Pleistocene climate transition (MPT) period the East Asian monsoon evolution and associated changes of upper water column structure in the northern SCS were probably driven partly by tropical forcing, like in the southern SCS, and should not be related only to the high latitude ice sheet changes. Particularly, millennial-scale climate fluctuations (mainly ∼1.4 kyr cycle) were found to exist throughout the glacial and interglacial stages during the MPT period in the northern SCS, but slightly different from the sawtooth-like D/O events recorded in late Quaternary Greenland ice cores. During the mid-Pleistocene terminations, the SST warming was synchronous with the northern ice sheet retreat, indicated by benthic δ 18 O, in the northern SCS, which is consistent to the previous findings in the late Quaternary SCS and apparently different from that in the western equatorial Pacific Ocean, providing new insights into the studies of East Asian monsoon evolution and rapid climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    7
    Citations
    NaN
    KQI
    []