Potential new chemotherapy strategy for human ovarian carcinoma with a novel KSP inhibitor

2015 
Abstract Among synthetic kinesin spindle protein (KSP) inhibitor compounds, KPYB10602, a six-member lactam-fused carbazole derivative was the most potent in vitro against cell growth of human ovarian cancer, A2780. KPYB10602 caused dose-dependent suppression of tumor growth in vivo . Mitotic arrest due to KPYB10602 was confirmed in vitro , and was characterized by inhibition of securin degradation. Apoptosis after mitotic arrest was associated with an increase in the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Increase of reactive oxygen species (ROS) and caspase pathway were also involved. Furthermore, KPYB10602 caused little neurotoxicity in vivo . Therefore, KPYB10602 could be a promising candidate as an anti-tumor agent with reduced adverse events for treating human ovarian cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    4
    Citations
    NaN
    KQI
    []