Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor

2018 
Abstract The simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. We developed a novel DNA-labeled sandwich electrochemical biosensor based on a glassy carbon electrode modified with 3D graphene and a hybrid of Au nanocages (Au NCs)/amino-functionalized multiwalled carbon nanotubes (MWCNT-NH 2 ) for label-free and selective detection of MCF-7 breast cancer cells via differential pulse voltammetry. The layer-by-layer assembly and cell-detection performance of the Au NCs/MWCNTs-NH 2 -based biosensor were investigated using scanning electron microscopy and electrochemical methods including cyclic voltammetry and electrochemical impedance spectroscopy. Owing to the advantages of DNA-labeled antibodies and a nanomaterial-based signal amplification strategy, the fabricated cytosensor exhibited high specificity and sensitivity when detecting MCF-7 cells in the range of 1.0 × 10 2 to 1.0 × 10 6 cells mL −1 with a low detection limit of 80 cells mL −1 (3σ/slope). Furthermore, the biosensor exhibited high selectivity when detecting MCF-7 cells and showed considerable potential for practical applications. The proposed DNA-labeled sandwich electrochemical biosensor provides a stable, sensitive approach to detecting cancer cells and is promising in terms of potential applications to cancer diagnosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    41
    Citations
    NaN
    KQI
    []