Primary role of respiratory afferents in sustaining breathing rhythm.

1978 
We studied the effects on breathing rhythm of suppressing the major respiratory stimuli (wakefulness, vagal, peripheral and central chemoreceptors) in healthy, unanesthetized dogs. Respiratory frequency (f) was obtained with a pneumotachograph; the state of wakefulness (W) or sleep was determined by EEG and behavioral criteria. During quiet W, f averaged 17 breaths/min and minute volume of ventilation (VI), 8.4 l/min. In slow-wave sleep (SWS), f slowed to 14 breaths/min, and VI decreased to 6.8 l/min. Afferent vagal blockade during SWS slowed f to 4 breaths/min, due primarily to prolongation of expiratory duration (Te) to 13.3 s, and decreased VI to 4.8 l/min. One breath of 100% O2 prolonged Te further to 27.4 s. Central chemoreceptor sensitivity was then reduced by inducting a metabolic alkalosis that combined with SWS, vagal blockade, and hyperoxia prolonged Te to as long as 57 s and reduced f to as low as 1 breath/min. The results demonstrate that afferent respiratory stimuli are essential for sustaining adequate ventilation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    91
    Citations
    NaN
    KQI
    []