ProbingSingle Molecule Binding and Free Energy Profilewith Plasmonic Imaging of Nanoparticles

2019 
Measuring binding between molecules is critical for understanding basic biochemical processes, developing molecular diagnosis, and screening drugs. Here we study molecular binding at the single molecule level by attaching nanoparticles to the molecular binding pairs. We track the thermal fluctuations of the individual nanoparticles with sub-nm precision using a plasmonic scattering imaging technique and show that the fluctuations are controlled by the molecular binding pairs rather than by the nanoparticles. Analysis of the thermal fluctuations provides unique information on molecular binding, including binding energy profile, effective spring constant, and switching between single and multiple molecular binding events. The method provides new insights into molecular binding and also allows to differentiate non-specific binding from specific binding, which has been a difficult task in biosensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    18
    Citations
    NaN
    KQI
    []