Minocycline inhibits mTOR signaling activation and alleviates behavioral deficits in the Wistar rats with acute ischemia stroke.

2020 
BACKGROUND Mammalian target of rapamycin (mTOR) has been evidenced as a multimodal therapy in the path-ophysiological process of acute ischemic stroke (AIS). However, the pathway that minocycline targets mTOR signaling is not fully defined in the AIS pathogenesis. This study is to aim at the effects of minocycline on the mTOR signaling in the AIS process and further discover the underlying mechanisms of minocycline involved in the following change of mTOR signaling-autophagy. METHODS Cerebral ischemia/reperfusion (CIR) rat animal models were established with the transient suture occlusion into middle cerebral artery. Minocycline (50mg/kg) was given by intragastric administration. The Morris water maze was used to test the cognitive function of animals. Immunohisto chemistry and immuno fluorescence were introduced for testing the lev-els of synaptophysin and PSD-95. Western blot was conducted for investigating the levels of mTOR, p-mTOR (Ser2448), p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366), p-eIF4B (Ser406), LC3, p62, synaptophysin and PSD-95. RESULTS Minocycline prevents cognitive decline of the MCAO stroke rats. Minocycline limits the expression of p-mTOR (Ser2448) and the downstream targets of mTOR [p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366) and p-eIF4B (Ser406)] (P<0.01), while minocycline has no influence on mTOR. LC3-II abundance and the LC3-II/I ratio were upregu-lated in the hippocampus of the MCAO stroke rats by the minocycline therapy (P<0.01). p62 was downregulated in the hip-pocampus from the MCAO stroke rats administrated with minocycline therapy(P<0.01). The levels of SYP and PSD-95 were up-regulated in the brain of the MCAO stroke rats administrated with minocycline therapy. CONCLUSION Minocycline prevents cognitive deficits via inhibiting mTOR signaling and enhancing autophagy process, and promoting the expression of pre-and postsynaptic proteins (synaptophysin and PSD-95) in the brain of the MCAO stroke rats. The potential neuroprotective role of minocycline in the process of cerebral ischemia may be related to mitigating is-chemia-induced synapse injury via inhibiting activation of mTOR signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []