Electrochemical detection combined with machine learning for intelligent sensing of maleic hydrazide by using carboxylated PEDOT modified with copper nanoparticles

2019 
A method for intelligent data analysis was designed by combining electrochemical sensing with machine learning (ML). Specifically, a voltammetric sensor is described for determination of the phytoinhibitor maleic hydrazide in crop samples. Carboxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-C4-COOH) was electro-synthesized in aqueous micellar solution by direct anodic oxidation of its monomer. A nanosensor was then prepared by placing copper nanoparticles (CuNPs) on the PEDOT-C4-COOH film via electro-deposition of Cu (II) from aqueous micellar solutions. An artificial neural network (ANN) served as a powerful ML model to realize intelligent data analysis and smart transformation for digital output. Different established regression methods were selected for evaluating the ANN-based method that was found to be superior to known methods. The sensor has a wide working range (from 0.06–1000 μM), a low limit of detection (10 nM), good stability, selectivity and practicality. The method was applied to the determination of maleic hydrazide in (spiked) samples of onion, rice, potato and cotton leaf. Satisfactory results demonstrate that the feature of simultaneous data acquisition and analysis is highly attractive.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    24
    Citations
    NaN
    KQI
    []