Tailoring Broad-Band-Absorbed Thermoplasmonic 1D Nanochains for Smart Windows with Adaptive Solar Modulation.

2021 
Controlling solar transmission through windows promises to reduce building energy consumption. A new smart window for adaptive solar modulation is presented in this work proposing the combination of the photothermal one-dimensional (1D) Au nanochains and thermochromic hydrogel. In this adaptive solar modulation system, the Au nanochains act as photoresponsive nanoheaters to stimulate the optical switching of the thermochromic hydrogel. By carefully adjusting the electrostatic interactions between nanoparticles, different chain morphologies and plateau-like broad-band absorption in the NIR region are achieved. Such broad-band-absorbed 1D nanochains possess excellent thermoplasmonic effect and enable the solar modulation with compelling features of improved NIR light shielding, high initial visible transmittance, and fast response speed. The designed smart window based on 1D Au nanochains is capable of shielding 94.1% of the solar irradiation from 300 to 2500 nm and permitting 71.2% of visible light before the optical switching for indoor visual comfort. In addition, outdoor cooling tests in model house under continuous natural solar irradiation reveal the remarkable passive cooling performance up to ∼7.8 °C for the smart window based on 1D Au nanochains, showing its potential in the practical application of building energy saving.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    4
    Citations
    NaN
    KQI
    []