Numerical analysis of an unsteady natural cavitating flow around an axisymmetric projectile under various free-stream temperature conditions

2021 
Abstract Here, an unsteady natural cavitating flow around an axisymmetric projectile is computationally studied using a homogeneous multiphase approach. The numerical models used are based on a dual-time preconditioning method, an interface-capturing scheme, and a modified cavitation model, to capture unsteady cavitation structure behaviors. Full compressibility of two phases and an energy equation are used to determine the effects of temperature on a cavitating flow. First, the experimental data were validated at a cavitation number of σ = 0.435. Both quantitatively and qualitatively good agreements were achieved, including the evolution of the cavity shape, cavity length, and cavity thickness. Then, the key characteristics of an unsteady cavitation structure regarding the cavity growth, re-entrant jet, cavity shedding, and collapse were analyzed. In particular, the mechanism of the re-entrant jet inside the cavity, causing the periodic cavity shedding, was explored. Furthermore, detailed mechanisms of cavity shedding with periodic cavity–vortex–pressure interaction behaviors were analyzed. Finally, the influences of free-stream temperature on the cavitation structure behaviors were carefully investigated. It was found that both the cavity length and thickness increased with the free-stream temperature under the atmospheric pressure condition. The most sensitive effects occurred when the free-stream temperature approached its boiling point. In case of the same reference cavitation number and Reynolds number, the cavity shape tended to be mushier with increasing water temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    4
    Citations
    NaN
    KQI
    []