Activin A improves the neurological outcome after ischemic stroke in mice by promoting oligodendroglial ACVR1B-mediated white matter remyelination

2020 
Abstract Activin A plays important roles in ischemic injury and white matter remyelination, but its mechanisms are unclear. In this study, the adult male C57BL/6 J mice were used to establish the model of 1 h middle cerebral artery occlusion/reperfusion (MCAO/R) 1 d to 28 d-induced ischemic stroke in vivo. We found that the neurological outcome was positively correlated with the levels of myelin associated proteins (include MAG, CNPase, MOG and MBP, n = 6 per group) both in corpus callosum and internal capsule of mice with ischemic stroke. The dynamic changes of Luxol fast blue (LFB) staining intensity, oligodendrocyte (CC1+) and proliferated oligodendrocyte precursor (Ki67+/PDGFRα+) cell numbers indicated demyelination and spontaneous remyelination occurred in the corpus callosum of mice after 1 h MCAO/R 1 d-28 d (n = 6 per group). Activin receptor type I (ACVR1) inhibitor SB431542 aggregated neurological deficits, and reduced MAG, MOG and MBP protein levels of mice with ischemic stroke (n = 6 per group). Meanwhile, recombinant mouse (rm) Activin A enhanced the neurological function recovery, MAG, MOG and MBP protein levels of mice with 1 h MCAO/R 28 d. In addition, the injection of AAV-based ACVR1B shRNA with Olig2 promoter could reverse rmActivin A-induced the increases of CC1+ cell number, LFB intensity, MAG, MOG and MBP protein levels in the corpus callosum (n = 6 per group), and neurological function recovery (n = 10 per group) of mice with 1 h MCAO/R 28 d. These results suggested that Activin A improves the neurological outcome through promoting oligodendroglial ACVR1B-mediated white matter remyelination of mice with ischemic stroke, which may provide a potential therapeutic strategy for ischemic stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []