Impaired Hepatocyte DNA Synthetic Response Posthepatectomy in Insulin-Like Growth Factor Binding Protein 1-Deficient Mice with Defects in C/EBPβ and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Regulation

2003 
After a two-thirds hepatectomy, normally quiescent liver cells are stimulated to reenter the cell cycle and proliferate to restore the original liver mass. One of the most rapidly and highly induced genes and proteins in regenerating liver is insulin-like growth factor binding protein 1 (IGFBP-1), a secreted protein that may modulate the activities of insulin-like growth factors (IGFs) or signal via IGF-independent mechanisms. To assess the functional role of IGFBP-1 in liver regeneration, mice with a targeted disruption of the IGFBP-1 gene were generated. Although IGFBP-1−/− mice demonstrated normal development, they had abnormal liver regeneration after partial hepatectomy, characterized by liver necrosis and reduced and delayed hepatocyte DNA synthesis. The abnormal regenerative response was associated with blunted activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and a reduced induction of C/EBPβ protein expression posthepatectomy. Like cell cycle abnormalities observed in hepatectomized C/EBPβ−/− mice, cyclin A and cyclin B1 expression was delayed and reduced in IGFBP-1−/− livers, whereas cyclin D1 expression was normal. Treatment of IGFBP-1−/− mice with a preoperative dose of IGFBP-1 induced MAPK/ERK activation and C/EBPβ expression, suggesting that IGFBP-1 may support liver regeneration at least in part via its effect on MAPK/ERK and C/EBPβ activities. These findings are the first demonstration of the involvement of IGFBP-1 in the regulation of in vivo mitogenic signaling pathways.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    101
    Citations
    NaN
    KQI
    []