Algorithm for Determining the Knock Resistance of Pipeline Natural Gases

2020 
A next-generation algorithm to calculate the PKI methane number is reported. The algorithm is suitable for a wide range of fuel compositions encountered in natural gas pipelines, including admixture of hydrogen and carbon monoxide from renewable sources. Comparison with measurements of knock in a commercial engine shows that the algorithm allows sharp distinction between fuel compositions that do or do not cause engine knock under given operating conditions. Moreover, the algorithm presented here demonstrates superior performance as compared to the existing methods from MWM and AVL. The methane numbers calculated using the PKI MN algorithm for a wide range of fuel compositions are within the uncertainty of the experimental knock measurements. In contrast, methods that are currently used do not predict the knock behavior of the measured gas compositions reliably. A major benefit of the algorithm presented here is that it consists of a simple polynomial equation that can be easily integrated into real-time gas-quality sensing equipment to calculate the PKI MN for assessment of pipeline gas quality or into engine management systems to allow next-generation feed-forward, fuel-adaptive control. In contrast, the current methods such as AVL and MWM need dedicated (and for AVL, proprietary) solvers that iteratively calculate the methane number. Furthermore, given the experimentally verified reliability and ease of implementation of the PKI MN algorithm, we assert that it is an excellent, open-source candidate for international standards for specifying the knock resistance of gaseous fuels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []