The (010) surface of the Al45Cr7 complex intermetallic compound : insights from Density Functional Theory

2020 
The tunability offered by alloying different elements is useful to design catalysts with greater activity, selectivity, and stability than single metals. By comparing the Pd(111) and PdZn(111) model catalysts for CO2 hydrogenation to methanol, we show that intermetallic alloying is a possible strategy to control the reaction pathway from the tuning of adsorbate binding energies. In comparison to Pd, the strong electron-donor character of PdZn weakens the adsorption of carbon-bound species and strengthens the binding of oxygen-bound species. As a consequence, the first step of CO2 hydrogenation more likely leads to the formate intermediate on PdZn, while the carboxyl intermediate is preferentially formed on Pd. This results in the opening of a pathway from carbon dioxide to methanol on PdZn similar to that previously proposed on Cu. These findings rationalize the superiority of PdZn over Pd for CO2 conversion into methanol, and suggest guidance for designing more efficient catalysts by promoting the proper reaction intermediates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []