Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite

2019 
This study aims to illustrate the preparation of a new nanobiocomposite by incorporating copper oxide nanoparticles into cuttlebone matrix (CB/CuO NPs), and it was tested to define how effective it was to adsorb and remove arsenate from aqueous systems. CB is the bone tissue of cuttlefish with high porosity, permeability, and low cost. CuO NPs have been introduced as an effective arsenate adsorbent. Producing nanocomposite by introducing of CuO NPs in the structure of CB enhanced their stability and facilitated their separation from solution. Incorporation of CuO NPs in the structure of CB enhanced the adsorption capacity of CB. The adsorption data were fitted with both Langmuir and Freundlich isotherms, but Langmuir isotherm exhibited better matching rather than Freundlich isotherm. The maximum adsorption capacity (qmax) was calculated from Langmuir adsorption isotherm which was around 25.13 mg g−1. Kinetic data fitted well to the pseudo-second-order reaction model. The results indicate that the possible mechanism of arsenate adsorption on CB/CuO is through development of inner sphere complex. Simple preparation and abundant and good adsorption capacity in the presence of calcium ions indicate that the CB/CuO is suitable for removal of arsenate from contaminated drinking water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []