Wide-field Decodable Orthogonal Fingerprints of Single Nanoparticles Unlock Multiplexed Digital Assays

2020 
The control in optical uniformity of single nanoparticles and tuning their diversity in orthogonal dimensions, dot to dot, holds the key to unlock nanoscience and applications. Here we report that the time-domain emissive profile from single upconversion nanoparticle, including the rising, decay and peak moment of the excited state population (T2 profile), can be arbitrarily tuned by upconversion schemes, including interfacial energy migration, concentration dependency, energy transfer, and isolation of surface quenchers. This allows us to significantly increase the coding capacity at the nanoscale. We further implement both time-resolved wide-field imaging and deep-learning techniques to decode these fingerprints, showing high accuracies at high throughput. These high-dimensional optical fingerprints provide a new horizon for applications spanning from sub-diffraction-limit data storage, security inks, to high-throughput single-molecule digital assays and super-resolution imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    1
    Citations
    NaN
    KQI
    []