GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017 
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^4  years. We infer the component masses of the binary to be between 0.86 and 2.26  M⊙, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17–1.60  M⊙, with the total mass of the system 2.74^(+0.04)_(−0.01)M⊙. The source was localized within a sky region of 28  deg^2(90% probability) and had a luminosity distance of 40^(+8)_(−14)  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    195
    References
    7023
    Citations
    NaN
    KQI
    []