PANNA: Properties from Artificial Neural Network Architectures.

2019 
Prediction of material properties from first principles is often a computationally expensive task. Recently, artificial neural networks and other machine learning approaches have been successfully employed to obtain accurate models at a low computational cost by leveraging existing example data. Here, we present a software package "Properties from Artificial Neural Network Architectures" (PANNA) that provides a comprehensive toolkit for creating neural network models for atomistic systems. Besides the core routines for neural network training, it includes data parser, descriptor builder and force-field generator suitable for integration within molecular dynamics packages. PANNA offers a variety of activation and cost functions, regularization methods, as well as the possibility of using fully-connected networks with custom size for each atomic species. PANNA benefits from the optimization and hardware-flexibility of the underlying TensorFlow engine which allows it to be used on multiple CPU/GPU/TPU systems, making it possible to develop and optimize neural network models based on large datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    16
    Citations
    NaN
    KQI
    []