Large-scale testing of a sandwich shaft-sealing system at the Mont Terri rock laboratory

2021 
Abstract. Shaft-sealing systems for nuclear waste repositories are constructed to limit fluid inflow from the adjacent rock during the early stage after closure of the repository and to delay the release of possibly contaminated fluids from the repository at later stages. Current German concepts of shaft seals contain the hydraulic sandwich sealing system as a component of the lower seal in host rock (Kudla and Herold, 2021). The KIT-developed sandwich sealing system consists of alternating sealing segments (DS) of bentonite and equipotential segments (ES) that are characterized by a high hydraulic conductivity. Within the ES, fluid is evenly distributed over the cross section of the seal. Water bypassing the seal via the excavation-damaged zone or penetrating the seal inhomogeneously is contained, and a more homogeneous hydration and swelling of the DS is obtained. The functionality of such a system was proven in laboratory and semi-technical-scale experiments (Schuhmann et al., 2009). After a joint international pre-project (Emmerich et al., 2019) dedicated to the planning of a large-scale in situ test that demonstrates the feasibility and effectiveness of the sandwich shaft-sealing system in interaction with the host rock, the large-scale experiment was launched at the Mont Terri rock laboratory in July 2019 with partners from Germany, Switzerland, Spain, UK, and Canada. It consists of two experimental shafts of 1.18 m diameter and 10–12.6 m depth, constructed using a core drilling technique with a custom-made drill rig in a new niche in the sandy facies of the Opalinus Clay. The seal in shaft 1 consists of four DS (calcigel) of 1 m thickness and five ES (fine-grained quartz sand), each 30 cm thick (Fig. 1). Shaft sinking began in August 2020 and was completed in November 2020. In the following months, the sealing system and instrumentation of shaft 1 were installed. The sealing system is saturated from a pressure chamber located at the shaft bottom via an inclined lateral feeding borehole. Hydration of the system started in May 2021. Shaft 2 will host a slightly modified system emplaced 1–1.5 years later, in order to integrate experience obtained during the early operation phase of shaft 1. In contrast to shaft 1, the excavation-damaged zone around shaft 2 will have had time to develop. The seals and the surrounding rock are intensely monitored. Measurements in the rock (geophysics, pore pressure, and total stress) were started between August 2019 and March 2020. Characterization of the excavation-damaged zone along the wall of shaft 1 was performed by geophysical and surface packer measurements prior to seal emplacement. Measurements inside the shaft comprise water content, relative humidity, and temperature, pore pressure, stress, and displacements. The in situ work is backed by laboratory testing and model simulation. Data and experience obtained to date will be presented. The sandwich experiment is funded by the German Federal Ministry for Economic Affairs and Energy under contract 02E11799.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []