Tubular graphene architectures at the macroscopic scale: fabrication and properties

2016 
AbstractSpecific graphene architectures at the macroscopic scale are paramount for exploring new functions and practical uses of graphene. In this study, macroscopic, freestanding, and tubular graphene (TG) architectures were successfully fabricated through a versatile and robust process based on the annealing of cellulose acetate (CA) on Ni templates. These TG architectures can be obtained as woven tubes with diameters of approximately 50 μm; they possess high graphitic crystallinity, strong electrical conductivity, and favorable corrosion resistance. The effects of processing parameters, such as annealing temperature, annealing time, and amount of CA, on the graphene properties of these architectures were investigated and are discussed in this paper. The graphene properties were characterized through field emission scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, Raman spectroscopy, four-point probe resistivity, and electrochemical measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []