Complex study of the rat heart at isoproterenol damage

2014 
Abstract Introduction of isoproterenol (an agonist of beta-adrenoreceptors) to rats is one of the widespread experimental models of cardiac failure. It is caused by damage of cardiomyocytes with the subsequent development of substitutive fibrosis. The purpose of the given work was the complex characteristic of cardiac function by means of invasive and noninvasive (echocardiography and impedansometry) methods of research. Isoproterenol was injected twice with a daily interval in dozes 85, 120, 150 or 180 mg/kg. Echocardiographic study of the heart in 2 weeks revealed obvious attributes of cardiac failure (left ventricular dilatation, lowered ejection fraction) in the groups which have received high cumulative dozes of isoproterenol (300-360 mg/kg). The catheterization of the left ventricle in these groups has shown raised enddiastolic pressure, decreased maximal rate of pressure development and fall, and also lowered indices of myocardial contractility and relaxability. In the groups which have received smaller isoproterenol dozes, apparent decrease in relaxability parameters (constants of isovolumic and auxovolumic relaxation) has been revealed at only slightly changed parameters of contractility. A strong correlation between echocardiographic and invasive parameters of myocardial contractility has been found. The phase analysis of the cardiac cycle has shown a lengthening of isometric phases of contraction and relaxation, as well as duration of ejection due to shortening duration of filling of both ventricles. Cardiomyocytes isolated from hearts with obvious cardiac failure responded to electrostimulation by arrhythmic contractions and also by much slowed and incomplete removal of free Ca++ from the myoplasm. Results allow to conclude that relatively smaller extent of myocardial damage is accompanied by decreased relaxability at slightly changed contractility, while at greater degree of damage both processes fail, but delay of relaxation still prevails.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []