The impact of ischemic stroke on connectivity gradients

2018 
Understanding the relationship between localized anatomical damage, reorganization, and functional deficits is a major challenge in stroke research. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, thereby affecting a whole network of interconnected regions. Recent advances suggest an alternative to discrete functional networks by describing a connectivity space based on a low-dimensional embedding of the full connectivity matrix. The dimensions of this space, described as connectivity gradients , capture the similarity of areas9 connections along a continuous space. Here, we defined a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes resulted in dimension-specific alterations in functional connectivity over the first week after symptoms onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of change in functional connectivity was determined by the distance from the lesion along these connectivity gradients regardless of the anatomical distance from the lesion. Together, these results provide a novel framework to study reorganization after stroke and suggest that, rather than only impacting on anatomically proximate areas, the indirect effects of ischemic strokes spread along the brain relative to the space defined by its connectivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []