Double stimuli-responsive cellulose nanocrystals reinforced electrospun PHBV composites membrane for intelligent drug release

2020 
Abstract Double stimuli-responsive functionalized cellulose nanocrystal-poly[2-(dimethylamino)ethyl methacrylate] (CNC-g-PDMAEMA) reinforced poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) electrospun composite membranes were explored as drug delivery vehicles using tetracycline hydrochloride (TH) as a model drug. It was found that rigid CNC-g-PDMAEMA nanoparticles enhanced thermal, crystallization and hydrophilic properties of PHBV. Moreover, great improvements in fiber diameter uniformity, crystallization ability and maximum decomposition temperature (Tmax) could be achieved at 6 wt% CNC-g-PDMAEMA. Furthermore, by introducing stimuli-responsive CNC-g-PDMAEMA nanofillers, intelligent and long-term sustained release behavior of composite membranes could be achieved. The releasing mechanism of composite membranes based on zero order, first order, Higuchi and Korsmeyere-Peppas mathematical models was clearly demonstrated, giving effective technical guidance for practical drug delivery systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    15
    Citations
    NaN
    KQI
    []