Electron acceleration with improved Stochastic Differential Equation method: cutoff shape of electron distribution in test-particle limit

2015 
We develop a method of stochastic differential equation to simulate electron acceleration at astrophysical shocks. Our method is based on It\^{o}'s stochastic differential equations coupled with a particle splitting, employing a skew Brownian motion where an asymmetric shock crossing probability is considered. Using this code, we perform simulations of electron acceleration at stationary plane parallel shock with various parameter sets, and studied how the cutoff shape, which is characterized by cutoff shape parameter $a$, changes with the momentum dependence of the diffusion coefficient $\beta$. In the age-limited cases, we reproduce previous results of other authors, $a\approx2\beta$. In the cooling-limited cases, the analytical expectation $a\approx\beta+1$ is roughly reproduced although we recognize deviations to some extent. In the case of escape-limited acceleration, numerical result fits analytical stationary solution well, but deviates from the previous asymptotic analytical formula $a\approx\beta$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []