Towards 6G: Paradigm of realistic terahertz channel modeling

2021 
Terahertz (THz) communications are envisioned as a key technology for the sixth-generation wireless communication system (6G). However, it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band. This makes empirical or stochastic modeling approaches relying on measurements no longer stand. In order to break through the bottleneck of scarce full-dimensional channel sounding measurements, this paper presents a novel paradigm for THz channel modeling towards 6G. With the core of high-performance ray tracing (RT), the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic (EM) properties of the three-dimensional (3D) environment model in the target scenarios. Then, through extensive RT simulations, the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families. Verified by RT simulations, these models can generate realistic channels that are valuable for the design and evaluation of THz systems. Representing two ends of 6G THz use cases from microscopy to macroscopy, case studies are made for close-proximity communications, wireless connections on a desktop, and smart rail mobility, respectively. Last but not least, new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation, antenna array, and device aspects, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    1
    Citations
    NaN
    KQI
    []