Prostatic artery embolization with polyethylene glycol microspheres: evaluation in a canine spontaneous benign prostatic hyperplasia model.

2020 
BACKGROUND Prostatic artery embolization (PAE) is a minimally invasive technique for the management of symptomatic benign prostatic hyperplasia (BPH) relieving the lower urinary tract symptoms in patients. Various embolic agents have been tested in animal models and subsequently used in human patients. The purpose of this study was to evaluate the technical feasibility, effectiveness, and safety of PAE with polyethylene glycol microspheres in a canine spontaneous BPH model. RESULTS Five adult male Beagle dogs (4.78 ± 1.11 years) were diagnosed by tranrectal ultrasonography of spontaneous BPH (prostate volume > 18 ml) and underwent PAE with polyethylene glycol microspheres (400 ± 75 μm). PAE procedures were performed successfully in all dogs. After PAE, all dogs were inspected for potential procedure-related complications during 1 month of follow-up. No major complications were observed any animal. Follow-up angiography was performed in each animal at 1 month of follow-up. Recanalization was demonstrated in all the embolized prostatic arteries or main branches at the end of the study. Magnetic Resonance Imaging (MRI) evaluations were performed immediately before PAE as baseline data, and 1 week, 2 weeks and 1 month after PAE. MRI study showed that the prostate shrank substantially with ischemic necrosis in each dog. There was a significant reduction in the mean prostate volume at 2 weeks and 1 month compared with the baseline data, from 19.95 ± 1.89 mL to 13.14 ± 2.33 and 9.35 ± 2.69 mL (p < 0.001), respectively. Histopathological study was conducted after 1-month follow-up angiography and confirmed the therapeutic responses with diffuse glandular atrophy and interstitial fibrosis. CONCLUSIONS The findings of the present study support that PAE with the use of polyethylene glycol microspheres is a safe and feasible procedure that may induce a significant shrinkage of prostate due to the local ischemia and secondary glandular atrophy. Early recanalization of target arteries remains to be further addressed in both laboratory investigation and clinical practice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []